
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Finding an Optimal Path to A Desired Ending with

Maximum CGs in Otome Game Using

Backtracking

Bertha Soliany Frandi - 13523026

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: bertha.soliany@gmail.com , 13523026@std.stei.itb.ac.id

Abstract—This paper presents a backtracking algorithm to

solve the challenge of finding optimal paths in otome games,

aiming to maximize collectible Computer Graphics (CGs) and

reach desired endings. The algorithm utilizes a depth-first search

strategy with effective pruning techniques. The developed

program successfully models game narratives, optimizes for

multiple objectives, and provides a clear step-by-step guide for

users. The program also allows users to do simulation for the

obtained optimal path. While demonstrating strong performance

and guaranteeing optimal solutions, the approach faces

limitations with exponential growth in extremely large graphs

and its dependence on fully observable game information,

making it less suitable for real-world games. Future work will

focus on integrating advanced heuristic search for scalability,

incorporating reinforcement learning for handling hidden states,

and developing enhanced graphical visualizations for improved

user experience.

Keywords—backtracking; otome game; computer graphics

I. INTRODUCTION

The popularity of video games has significantly increased
over the years. This occurrence led to the emergence of
numerous genres. One of the most popular genres nowadays is
dating simulation games or commonly known as otome games.
Otome games are story-driven interactive experiences typically
targeted toward a female audience. This type of game focuses
on building romantic relationships with various characters.

While otome games traditionally emphasize narrative and
character development, many modern titles incorporate diverse
gameplay mechanics such as rhythm-based sequences, turn-
based combat, or strategy elements. A defining feature of
otome games is their branching storyline where the player’s
decisions determine the route, romance outcomes, and ultimate
endings.

A key collectible in these games is Computer Graphics
(CGs) that represent significant story moments. However, not
all CGs are accessible in a single playthrough. In many free-to-
play otome games, such as Mystics Messenger, players must
make specific choices to unlock CGs whereas premium games
like Café Enchanté often include access to all CGs once

purchased. Furthermore, within a single route, certain choices
may not unlock a CG whilst the other choice present will
trigger the CG for the story. This mechanism makes a specific
type of challenge for players to obtain or experience the CG.
The free-to-play game gives the challenge to unlock as many
CGs as possible while the premium otome games player will
want to know the full story of the CG and not only look at the
CG. It’s like giving an extra enjoyment to the game if the plater
can get the CG in premium games.

Community-driven wikis sometimes provide detailed
guides to obtaining CGs and endings. But it is rather tasking to
search for it one by one and construct it to a single path that
will ensure the plater to get the desired ending and maximal
CGs. This desire to experience the story and CGs while getting
the desired ending presents an opportunity for algorithmic
assistance.

This paper proposes the use of a backtracking algorithm to
explore branching narrative paths and identify an optimal
sequence of choices that leads to a desired ending while
unlocking as many CGs as possible. This approach assumes the
availability of structured data about the game’s choices and
outcomes such as those often compiled in fan-made wikis.

II. THEORETICAL FOUNDATION

A. Backtracking

Backtracking is an algorithm for solving problems that
gradually constructs potential solutions and the stops a path
when it finds that it cannot result in a viable or ideal solution. It
employs a depth-first search strategy, thoroughly analyzing
each potential decision branch before going on to the next. This
approach works particularly well for combinatorial search
space problems like pathfinding, riddles, and constraint
statisfication issues.

Every narrative choice made in an otome game can be
visualized as a branching node in a tree. Finding a route from
the game’s start to a particular conclusion while optimizing
collection rewards (CGs) is the goal. Backtracking enables this
by assessing every potential course of action and going back

mailto:bertha.soliany@gmail.com
mailto:13523026@std.stei.itb.ac.id

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

(backtracking) when the path results in an undesirable outcome
or does not enhance the CG collection.

Pruning is a key idea in backtracking, which is the practice
of ignoring entire subtrees after it is determined that they
cannot produce a better result than what has already been
discovered. When compared to a blind, brute-force approach,
this significantly boosts performance.

The general features of backtracking include a recursive
approach, incremental solution construction, abandonment of
partial solutions upon constraint violations, and suitability for
problems involving many decision points and outcomes.

This is one of the many examples of pseudocode for
backtracking algorithms.

function backtrack(path, current_state):

 if goal_condition_met(current_state):

 update_best_solution(path)

 return

 for option in get available_choices(current_state):

 if is_valid(option, current_state):

 apply(option, current_state)

 backtrack(path + [option], current_state)

 undo(option, current_state)

In this pseudocode, path tracks the sequence of decisions made
so far and current_state reflects the current progress (e,g.,
affection points, CGs collected). The algorithm explores valid
choices, recursively extends the current path and backtracks if
necessary.

 Use cases of backtracking are solving puzzles, finding all
permutations or combinations, navigating game tress, and
solving decision-based problems like narrative branching in
games.

 Since otome games have a decision-tress structure and
several goals (such as maximizing CGs and reaching a specific
conclusion), backtracking is a suitable option. However, its
success is dependent on the capacity to specify limitations and
optimize path evaluation to avoid unnecessary processing.

B. Otome game and CGs

A type of visual novels known as otome games focuses on
romantic narratives told from a primarily female point of view.
The genre is mostly intended for female viewers, hence the

term otome (乙女) in Japanese means “maiden.” Gamers take

on the role of a female lead who engages with several male
characters, each of whom stands for a distinct romantic path.
Various tale scenarios and endings are possible since these
pathways branch based on the decisions made by the player.

Although romance is a major theme in the genre, the main
draw of otome games is the opportunity to immerse oneself in
a deep, emotional story that is influenced by the choices made
by the player. Character connections, the plot’s trajectory, and

the opening of special tale events are all impacted by the
decisions made throughout the narrative. While gameplay
elements like riddles, stat-building, or time-limited events are
frequently added to otome games, the emotional journey and
branching tales continue to be the primary focus.

Computer Graphics, sometimes referred to as event CGs,
are one of the main collectible components in otome games. A
CG is a full-screen illustrated image that represents a
significant plot event, like a dramatic scene, a romantic
confession, or an emotional turning point. Players can unlock
these CGs as rewards depending on their decisions and
advancement.

By providing visual representation to tale segments that
would otherwise be text-based, CGs increase the narrative’s
emotional impact and level of immersion. For players who are
completionists and work to unlock the entire CG gallery the
game offers, they also serve as collector milestones. But not
every CG will appear in a single playthrough. Some have to do
with particular character paths, speech options, attachment
levels, or unspoken prerequisites that aren’t mentioned in the
game.

For example, in Mystic Messenger, certain CGs are only
available if the player chooses the correct responses during
chatroom interactions. In contrast, all CGs are accessible after
purchase in premium games such as Café Enchanté, but players
still have to figure out the right way to stimulate them inside
the narrative.

CGs are a major factor in player involvement since they act
as both rewards and story milestones. Many players consider
unlocking CGs to be an essential component of the ultimate
gaming experience since it provides them with both visual
pleasure and a feeling of accomplishment in the story. This
makes CG acquisition an appropriate target for optimization
with computational approaches like backtracking.

III. IMPLEMENTATION

The implementation of the optimal pathfinding system for
otome games is structured into several key components,
encompassing the story data, the core backtracking algorithm,
the execution environment, and the presentation of results. The
code can be fully seen in author’s GitHub under the name
“makalah_stima”.

A. Dummy Story Structure

The foundational element of the program is the story.

For the sake of implementing backtracking algorithm, the

story is present using JSON format that are later parsed

into Java objects. The reason for using JSON format is for

easy modification and expansion of narrative content

without requiring code changes. The “Mystic Messenger”

themed story serves as the concrete example,

demonstrating the system’s ability to navigate complex

character-based routes and collectible elements, such as

CGs.

Three of Mystic Messenger’s character are being

used for the dummy story. They’re Jumin Han, 707

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

(Seven), and Zen. There is no specific reason for choosing

them but the author only chose three character and not all

character exist in Mystic Messenger because three

character is enough for demonstrating the program.

The story_data.json file dictates the entire narrative,

including its title, description, a collection of nodes, and

CG description. Each node within the JSON corresponds

to a StoryNode object, which is the fundamental unit of the

story. A StoryNode encapsulates ‘id’, ‘title’, ‘description’,

‘cgs’, ‘choices’, ‘isEnding’, and ‘endingType’. ‘id’ is a

uniquie identifier for the node. For example, “start” and

“jumin_route”. ‘title’ is a descriptive title for the scene

(e.g., “Mystic Messenger Chat”). ‘description’ is the

narrative text displayed to the player for that scene. ‘cgs’ is

a list of CGs that are unlocked upon visiting this node and

representing visual events within the game. ‘choices’ is a

list of Choice objects. Each of it detailing an ‘id’ for user

selection, ‘text’ for the option, and ‘destination’ for the ‘id’

of the next StoryNode if this choice is made. This list

defines the branching pathways from the current node.

‘isEnding’ is a Boolean flag indicating if the node marks

an end to a story path. ‘endingType’ is a string that

categorizing the type of ending reached which contributes

the path’s overall score.

The StoryLoader.java utility class is responsible for

loading the story from JSON. It parses the story_data.json

into a Story object. This Story object then holds a map of

all StoryNode instances, making them accessible by their

IDs. The Story class also maintains all ‘cgDescriptions’

and the ‘startNodeId’.

The story is characterized by character routes,

multiple endings, and CG acquisition. As said before, there

are three characters that the dummy story has. Each of

them has their own routes. The narrative is distinctly

separated into routes for Jumin, Seven, and Zen. Each of it

commencing from the “start” node. Each character’s route

contains unique StoryNode sequences and choices that

lead to different relationship progressions and outcomes.

For the ending, the dummy story contains a total of

10 ending nodes that categorized into various ending type.

For Jumin’s route there are good and normal ending. For

Seven’s route there are good, bad, normal, and secret

ending. For Zen’s route there are good and normal ending.

These diverse endings allow the StoryPathFinder to target

specific narrative conclusions.

For the CG acquisition, the author has already stated

that CGs are one of collectible in otome game. Much more

if it’s an otome game like Mystic Messenger. The dummy

story gave 24 distinct CGs available across all routes. Each

StoryNode that unlocks a CG list its ‘id’ within its ‘cgs’

array. The Story object stores detailed description (e.g.,

"jumin_wedding": "Beautiful wedding ceremony with

Jumin”). This enrich the context of each collected artwork.

The program ensures that CGs are only counted once per

path even if a node is visited multiple times within a cycle

prevention context.

B. Algorithm Design

The core intelligence of the program resides in the

StoryPathFinder class that implements a backtracking

algorithm to identify optimal narrative paths based on

user-defined criteria (primarily maximizing CG collection

for a desired ending).

The pseudocode for backtracking is the one that

already mention in the theoretical foundation. In the

context of the StoryPathFinder.java implementation, ‘path’

corresponds to a StoryPath object which dynamically

stores the ‘nodeSequence’ and ‘choiceSequence’ taken so

far and the ‘current_state’ implicitly includes the current

StoryNode (‘currentNodeId), the ‘collectedCgs within the

StoryPath, and the ‘visitedInPath’ set used for cycle

detection. ‘goal_condition_met’ is satisfied when

‘currentNode.isEnding()’ is true. ‘update_best_solution’

involves adding the ‘completePath’ to the ‘allPaths’ list for

later sorting and selection. “get_available_choices’ is

‘currentNode.getChoices()’. ‘is_valid(option,

current_state)’ is checked by

‘!visitedInPath.contains(nextNodeId)’ for ensuring no

cycles are formed within a single path. ‘apply(option,

current_state)’ is impliciyly handle by Java’s call stack and

the creation of new ArrayList and HashSet objects when

extending the path for preventing modifications to

previous states.

The backtrack method in StoryPathFinder initiates a

Depth-First Search (DFS) from the story’s start node

(‘story.getStartNodeId()’). For each ‘currentNode’, it

iterates through all its ‘choices’. For every choice, it

identifies the ‘nextNodeId’.

A crucial aspect is the ‘visitedInPath’ HashSet.

Before traversing to ‘nextNodeId’, the algorithm checks if

‘nextNodeId’ has already been visited in path within the

‘currentPath’. If not, a ‘newVisited’ set is created, copying

the current ‘visitedInPath’ and adding ‘currentNodeId’.

Then, the backtrack method is recursively called with the

‘nextNodeId’ and the updated path state. This effectively

prunes paths that would otherwise enter infinite loops and

ensuring termination and efficiency.

For the CGs and endings tracking, the program has a

part for that too. The StoryPath class serves as a mutable

record of a single traversal through the story. It sorts the

‘nodeSequence’, ‘choiceSequence’ and ‘collectedCgs’.

When the backtrack method processes a ‘currentNode’, it

creates an ‘extendedPath’ by calling

‘cuurentPath.extend(currentNodeId, null,

currentNode.getCgs()). This method in StoryPath adds the

‘currentNodeId’ to the ‘nodeSequence’ and ‘addAll’ new

CGs from the ‘currentNode’ to the ‘collectedCgs’ set. This

effectively tracking all CGs acquired along the path. If a

‘currentNode’ is an ending node, the ‘extendedPath’ is

marked complete by calling

‘extendedPath.complete(currenNode.getEndingType())’.

This ‘complete’ method sets the ‘isComplete’ flag to true

and records the ‘endingType’ for the path. All

‘compltePath’ objects are then added to the ‘allPaths’ list

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

within the ‘StoryPathFinder’, which holds all valid

narrative conclusions discovered during the search.

There are also scoring system in the program. Once

all possible paths to a target ending are found, the

‘selectedBestPath’ or ‘selectedBestPathToSpecificEnding’

method ranks them based on a defined scoring system.

There are base score and ending bonus. Base score is

collected from collected CG which contributes 10 points

while ending bonus are awarded based on the ending type.

C. Tools and Execution

The entire application is develop using Java and

designed to run as a command-line interface (CLI)

application. This happens cause the program prioritizing

accessibility and ease of use without complex graphical

dependencies.

The program is built using Java and require Java 11

or higher for compilation and execution. The project

structure is organized into packages for modularity and

maintainability as it is made using object-oriented program

concept. The user application which is entirely menu-

driven within console is being made possible through

StoryApplication.java as the main entry point. It present

users with a main menu that offer two modes. Mode 1 is

for finding optimal path for a desired ending with maximal

CG obtain using backtracking and mode 2 is playing a

simulation. Of course, there’s option for exiting the

program too.

Mode 1 is used with calling ‘findOptimalPathMode’.

Users can select a character and a specific ending that they

want. The program dynamically lists the available endings

by filtering StoryNode Ids. Once selections are made, the

StoryPathFinder is invoked to fins the optimal path for that

specific ending.

Mode 2 allows users to experience the dummy story

made for this paper. It offers three options, interactive

optimal mode, auto mode, and free exploration mode. Free

exploration mode will happen if there are no optimal path

found. This can happen if the user has yet to do mode 1 to

find an optimal path for a specific ending. Free exploration

mode allows users to make their own choices without

guidance to experience the story organically and seeing

where their decisions lead. This represents a normal

gameplay of an otome game. Interactive optimal mode can

be used when users has already used the program to find

an optimal path (invoking the mode 1). The program then

will save the path find and use it for interactive optimal

mode and auto mode. In interactive optimal mode, user can

freely make choices with the optimal choice for the current

scene is highlighted. This provides guidance while

allowing player agency. There are notes for this mode.

Users can choose that freely. The program will lead the

users to the optimal path because the purpose of this mode

is for the users to see it more clearly about the choice

being made. The last mode, auto mode, allows program to

automatically play through the last found optimal path

with optional delays between scenes for a more narrative

experience. The ‘previewPath’ method provides a quick

overview of the route before full simulation.

Although console based, the StoryPathSimulator and

StoryApplication utilze ANSI escape codes for basic test

formatting, including colors and bolding to enhance

readability and highlight important information. Scene

content, CG collection notifications, and choice displays

are dynamically rendered to provide an immersive textual

experience.

D. Output and Results

The program provides detailed outputs for both

optimal pathfinding and simulation, offering insight into

the game’s structure and the algorithm’s performance.

These detailed outputs not only guide the user but also

provide valuable analytical data for game designers or

researchers studying narrative structures and player

engagement.

When an optimal path is found, the program presents

it in a clear step-by-step format. Path summary includes

the overall score, CGs collected, number of scenes/nodes

(length), and ending type. Optimal route includes each step

that clearly shows the step number, the node title, and the

choose action with the exact text of the optimal choice to

make. This serves as a direct guide for users. Collected

CGs part is a comprehensive sorted list of all cg IDs and

their description collected along that specific optimal route

is presented at the end. Result part is a concluding message

confirms that this is the best path for users chosen

character and ending.

Beyond just the optimal path, the program offers in-

depth statistics about the backtracking process and the

overall story structure. Search performance part reposts

the total path the backtracking algorithm explored and the

complete path found. This provides a direct measure of the

algorithm’s workload and the complexity of the narrative

graph. The path statistics part is for calculating and

displaying the minimum and maximum scores achieved

across all paths, the average score of all complete paths,

the average number of CGs collected per path, and the

average number of nodes traversed in a path. Top paths by

score part is for listing the top 3 or fewer if less than three

paths are found by their score, along with their collected

CGs and ending type. Ending type distribution part is to

provide a count of how many paths leads to each ending

type. This offer insights into the prevalence of different

outcomes in the story. Lastly, the CG collection frequency

part is for analyzing how frequently each individual CG is

collected across all explored paths, sorted by frequency.

This can indicate how common or rare certain CGs are to

obtain through typical playthroughs.

IV. ANALYSIS

This section will evaluate the performance and applicability
of the backtracking algorithm within the context of otome
game pathfinding. It will also compare with a different search
algorithm to make the analysis more pronounced.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Backtracking proves to be a well0suited and generally
efficient algorithm for solving the optimal pathfinding problem
in otome game. This is primarily due to the structured nature of
branching narratives. The problem can be naturally modeled as
finding a path in a directed acyclic graph (DAG) or a graph
where cycles are explicitly managed.

With their numerous decision points and multiple
outcomes, otome games generate a large combinatorial search
space. As a systematic way to explore all possible
configurations, backtracking is inherently designed for such
problems. It incrementally builds a solution and if partial
solution cannot lead to a viable of optimal complete solution, it
backs out or prunes that branch.

A key factor contributing to its efficiency is the
implementation of pruning strategies. In this system, pruning is
achieved primarily through cycle prevention and goal-directed
search. The ‘visitedInPath’ set withing the backtrack method
ensures that the algorithm does not revisit a node within the
same path. This prevents inifinite loops in cyclic graphs and
dramtically redus redundant explorations, ensuring that each
explored path is unique and finite. For the goal-directed search,
it is done with invoking
‘findOptimalPathToSpecificEnding(targetEndingNodeID)’.
With that method being invoke, the algorithm prioritizes paths
leading to a designed target ending node id. Any path that
reaches and ending node that is not the target ending node id is
immediately terminated within the backtrack method. This
effectively prunes entire subtrees that cannot lead to the desired
outcome, significantly narrowing the search space compared to
a general pathfinding algorithm that seeks any ending.

For the sample/dummy story, which has 33 nodes and 24
CGs, the backtracking algorithm quickly identifies the optimal
path. The detailed algorithm analysis outputs the total path
explores and complete paths found. While a specific numerical
output is dynamic based on execution, these metrics
demonstrate that the algorithm systematically explores the
necessary branches without becoming overwhelmed, finding
the best path based on the defined scoring system. The clear
and logical structures of decisions in typical otome games
makes backtracking a feasible and effective choice.

While efficient for well-structured problems, backtracking
faces inherent challenges when the complexity of the problem
space increases. In a theoretical worst-case scenario, if every
node has a high branching factor or many choices and paths are
very long, the number of possible paths can grow
exponentially. If the story graph were extremely dense with
many valid paths between any two nodes, an exhaustive search
might become computationally prohibitive. This is a
characteristic of many combinatorial search problems. There is
also a factor of branching factor (the number of choices per
StoryNode) and number of nodes in a path. If those increase, it
can lead to a significant increase in the number of
‘exploredPaths’.

Fortunately, real-world otome games with hundreds of
nodes, rarely exhibit truly “worst-case” graph structures. They
often segment narratives into character-specific routes which
naturally partitions the larger graph into smaller more
manageable sub-graphs. Current implementation leverages this

by allowing users to select a character before searching for an
ending type. This implicitly reduces the initial search scope to a
character’s specific route.

The cycle mechanism remains crucial for scalability as it
ensures that the algorithm does not waste resources on
redundant cyclic paths. This could otherwise lead to non-
terminating searches in games with loops. The goal-directed
pruning also ensures that only paths relevant to the target
ending node are fully explored. These pruning techniques help
to keep the practical performance within reasonable limits for
typical game sizes but they cannot entirely overcome the
exponential nature if the game’s decision tree truly explodes in
complexity.

The current backtracking model also assumes complete and
explicit knowledge of the story’s structure, choices, and
outcomes, as provided in the JSON file. This is often an
oversimplification for many otome games. Real-world otome
games frequently incorporate hidden conditions or internal
states that are not immediately visible to the player or easily
extractable from a simple node-and-choice structure. These can
include affection points, event flags, dynamic choice
availability, and randomness which would make deterministic
pathfinding impossible.

Without knowledge of these hidden conditions, the
backtracking algorithm would be operating on an incomplete
representation of the game’s decision graph. It would
potentially miss optimal paths that require specific hidden stat
thresholds or event triggers to unlock certain crucial choices or
CGs. To account for hidden conditions, the ‘current_state’
would need to be significantly enriched. Instead of just
‘nodeSequence’ and ‘collectedCgs’, it would need to track all
relevant affection points, time stamps, and Boolean flags. This
would dramatically increase the size and complexity of the
state space, making direct traversal more computationally
intensive and memory-demanding. The most significant
challenge would be acquiring this hidden information. Game
files often obfuscate these internal mechanisms, requiring
extensive reverse-engineering or relying on community-driven
wikis that are meticulously compiled through trial-and-error
gameplay. The current program explicitly states its assumption
of availability of structured data about the games and choices
outcomes. To handle hidden conditions, a more advanced
approach might be necessary. This could involve state-space
search, heuristic search, and reinforcement learning.

Comparing backtracking algorithm with A* algorithm is a
worthy exploration. A* is a best-first search (BFS) algorithm
renowned for its efficiency in finding the shortest or lowest-
cost path in a graph. It achieves this by using a heuristic
function to estimate the cost from the current node to the goal
node, combining it with the actual cost from the start node to
the current node. Applying A* to this problem would require
defining an admissible and consistent heuristic function. For
example, to maximize CGs, a heuristic could estimate the
maximum possible additional CGs that can be collected from
the current node to the target ending. For scoring, this would
involve estimating the maximum potential score achievable
from the current node's sub-graph. If a strong, accurate, and
admissible heuristic can be formulated, A* could potentially

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

find the optimal path much faster than exhaustive backtracking,
as it intelligently prioritizes the most promising branches,
avoiding deep exploration of clearly sub-optimal paths.

While A* offers theoretical performance advantages for
shortest path problems, its direct application to this specific
multi-objective optimal path problem (maximizing CGs and
score) would require careful heuristic engineering. For a
problem where finding the absolute optimal path is paramount
and the graph size is manageable, backtracking offers a robust
and reliable solution, often being simpler to implement than
designing and validating a complex A* heuristic. The current
backtracking approach is effective for the defined problem due
to the clear objective function (scoring) and the ability to
efficiently prune irrelevant branches.

V. CONCLUSION

The implemented backtracking algorithm effectively
demonstrates its capability of identify optimal paths in
branching narrative games like otome games, successfully
maximizing collectible CGs and achieving desired endings
within a character-based story structure. Its strengths lie in
guaranteeing an optimal solution given explicit game data, its
adaptability to various scoring objectives and the practical
efficiency gained from crucial pruning techniques like cycle
detection and goal-directed search. However, this approach
faces limitations, notably its potential for exponential growth in
extremely large or densely interconnected graphs, and a
significant reliance on completely explicit game data, rendering
it less effective for real-world games with hidden conditions,
dynamic states, or unseen parameters. Future work should
therefore focus in augmenting the program’s capabilities
through the integration of advanced heuristic search algorithm
like A* for improved scalability, incorporating reinforcement
learning to navigate environments with hidden states and
partial observability and developing enhanced graphical
visualizations for a more intuitive user experience and deeper
narrative analysis.

VIDEO LINK AT YOUTUBE

https://youtu.be/NWJjuZJYW4M

CODE LINK AT GITHUB

https://github.com/BerthaSoliany/makalah_stima.git

ACKNOWLEDGMENT

The author would like to express gratitude to God for
providing strength and clarity, to the game development
community for their shared knowledge. The author is also
grateful to otome game developers, especially, Cheritz, the
developers Mystic Messenger, for creating a lovely game that
inspired this study. Lastly, the author extends gratitude to the
family for the support and encouragement throughout this
study.

REFERENCES

[1] R. Munir, “Algoritma Runut-balik (Backtracking) (Bagian 1),” [Online].
Available: https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-
2025/15-Algoritma-backtracking-(2025)-Bagian1.pdf. [Accessed: June.
23, 2025].

[2] “Backtracking Algorithm,” GeeksforGeeks. [Online]. Available:
https://www.geeksforgeeks.org/dsa/backtracking-algorithms/.
[Accessed: June, 23, 2025].

[3] Z. Zhang, “The Rise of Otome Game in China: Exploring the Social and
Psychological Traits of Otome Game Players,” [Online]. Available:
https://www.ewadirect.com/proceedings/lnep/article/view/14667.
[Accessed: June. 23, 2025].

[4] G. R. Diniz, R. D. D. Regis, J. C. V. Ferreira, “Otome Games:
globalization and glocalization processes, conceptualization and data
analysis of Brazilian players,” [Online]. Available:
https://www.researchgate.net/publication/374287484_Otome_Games_gl
obalization_and_glocalization_processes_conceptualization_and_data_a
nalysis_of_Brazilian_players. [Accessed: June 24, 2025].

STATEMENT

I hereby declare that the paper I wrote is my own writing, not
an adaptation or translation of someone else’s paper, and is not
plagiarized.

Bandung, 24 Juni 2025

Bertha Soliany Frandi

13523026

https://youtu.be/NWJjuZJYW4M
https://github.com/BerthaSoliany/makalah_stima.git
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/15-Algoritma-backtracking-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/15-Algoritma-backtracking-(2025)-Bagian1.pdf
https://www.geeksforgeeks.org/dsa/backtracking-algorithms/
https://www.ewadirect.com/proceedings/lnep/article/view/14667
https://www.researchgate.net/publication/374287484_Otome_Games_globalization_and_glocalization_processes_conceptualization_and_data_analysis_of_Brazilian_players
https://www.researchgate.net/publication/374287484_Otome_Games_globalization_and_glocalization_processes_conceptualization_and_data_analysis_of_Brazilian_players
https://www.researchgate.net/publication/374287484_Otome_Games_globalization_and_glocalization_processes_conceptualization_and_data_analysis_of_Brazilian_players

